
groove widths 0.603, x I = 0.1455, x~ = 0.6344, x~ = 1.44. The curves 1-5 correspond to A = 
13.7, 41, 136, 957, and 1777; the broken lines correspond to the limiting solution on the 
smooth part. The curves 4 and 5 on this section are virtually identical with the limiting 
curve and are not shown in the figure. 

LCnx[Fsin2~ ( As follows from (3.2), with h = const on the smooth part p _-- A*/2:|-~-?., <h>-- 

<h_~> l Jx~=x~ ] h:~/~ One can see that the pressure and therefore als0 the carrying capacity 

are maximum for ~ =:45 ~ It also follows from the formula that the pressure p reaches the 
maximum value Pmax at x 2 = x~. 

Figure 4 shows the two dependences Pmax(A) (i: the reduced asymptotic solution; 2: the 
result of the computer solution of the complete problem). 

We thank M. A. Galakhov for a discussion of some of the results of this work. 
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STRUCTURE OF SHOCK WAVES IN POROUS IRON AT LOW PRESSURES 

V. N. Aptukov, P. K. Nikolaev, 
and V. I. Romanchenko 

UDC 539.374+624.131 

The interest shown in the study of the behavior of porous materials under shock loading 
is due to their practical application in the explosive compaction of parts [i], their use in 
various types of shock-wave dampers [2], and the possibility such investigation offers for 
realizing a broad range of thermodynamic states in substances [3, 4]. 

The high-pressure region of shock compression, above I0 GPa, has traditionally been stud- 
ied more intensively. This is due to the rapid strides made in shock-wave physics in recent 
years. In the low-pressure region - where the most important mechanical effects are realized 
in terms of the strength and plastic flow of a material in pores - relatively little informa- 
tion has been collected. The data that is available is restricted to isolated materials and 
porosities, and the results are often contradictory [2]. 

The well-known models of the mechanical behavior of porous materials fall into two groups: 
equilibrium models with an explicit p ~ p relation [5, 6], and nonequilibriummodels reflect- 
ing the kinetics of pore collapse [7-10]. 

Here, on the basis of the thermomechanical principles of a continuum with internal state 
parameters, we propose a model of the behavior of porous solids under shock loading. The 
results of mathematical modeling are compared with experimental measurements we made of the 
compression-wave profile in porous iron at different initial porosities (10-40%). The pro- 
files were obtained by means of pressure gauges. 

i. Description of the Model. The mechanics of deformable porous solids are based on 
several hypotheses, the most important of which are the hypothesis of continuity and the 
postulate of macroscopic definability [ii]. 

Perm'. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, 
pp. 92-98, July-August, 1988. Original article submitted March 25, 1987. 
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The general system of equations of the thermomechanical behavior of a damaged elastic 
medium has the form [12-14] 

I �9 
- ~ 9 + d i v v ~ O ,  d i v ~ + p F = p v ,  

z = z(o, O, sp, ex), e = --pOz/O,~, 11 = --OzlOO,: (1 .1)  

~p = O(o, O, sv, sN), ~N = ~'(o, O, s~, sN), 
Oz " p Oz . " N Oz " p Oz " N ~ r ,  

O 0 ~ i = V . ( ~ . V O ) + r * o - - o ~ : e  --07~.~,.e , --t'--'o~p "e --po~ N- ' .e  ~v ,  

where ~, e, eP, e i a r e  t h e  s t r e s s  and s t r a i n  t e n s o r s  ( f o r  t h e  t o t a l  s t r a i n ,  v i s c o p l a s t i c  s t r a i n ,  
and t h e  s t r a i n  due to  t h e  d a m a g e s ) ;  v and F a r e  t h e  v e c t o r s  o f  v e l o c i t y  and t h e  body f o r c e s ;  
p is density; 6) is temperature; q is entropy; z is free enthalpy; r* is the density of the 
internal heat sources; .~ is the matrix of the thermal conductivities. 

To make practical use of system (i.i) in solving specific problems, it is necessary to 
specify the functions z, O, and ~F and the initial and boundary conditions. The tensors ep 
and a N in system (I.i) have the significance of internal state parameters of the medium that 
are attributable to the viscoplastic strains of the matrix and the strains connected with the 
change in the damage to the body. Here, we will use system (i.i) to derive the governing 
relations of initially porous bodies. 

We will examine a porous isotropic medium with a relative pore volume V N = v-N/v0 [V -N is 
the volume of pores in a certain small volume ~ = V -N + ~m, ~m is the volume of the matrix, 

V0 = (~)t=0]- We will define the mean density of the porous material as 9----p~m/p = pmvm/(vN 

q- Vml Vm = ~/V0, where pm is the running density of the matrix. If V N + 0 during load- 
ing, then 0 ~ pro. At the initial moment of time, vN= Vo N, V~ + Vo N = 1, so that Po = P~n(t--Vo~), 
where @m is the initial density of the matrix of the material (in the persent case, the den- 
sity of the porous iron). The volumetric deformation from the change in porosity is connected 
with the relative volume of the pores as gN = vN _ v0N" 

We will assume that the function z has a form similar to its form for a nonporous thermo- 
elastoviscoplastic material [13], the only difference being that the parameters of the medium 
are dependent on the relative volume of pores vN: 

I ( p~ S:S ) '(O, VN)6)(ln8 1)-}-3a(6),VN)Op+S:e~'+3p6 N. (1 .2)  
K( v + 

Here, p = (I/3)e:I; S= o--pI; I is the unit tensor; e, is the deviator of the tensor of the 
viscoplastic strains. In Eq. (1.2), the matrix of the porous material is assumed to be 
plastically incompressible ep = ep . The last term characterizes the work done by the mean 
pressure on the volumetric deformation due to the change in porosity. 

In accordance with the expression e------pOz/O~ [see (I.i)], we can use (1.2) to obtain 
physical equations for the porous material: 

! P O;(O,  V N )  O t S ep" (1.3) s = T K ( O , V  N) + + e~v' e -  2 G ( o , v  ~) + 

Thus, the total strain of the material is determined by the volumetric elastic deforma- 
tion of the matrix, the temperature, and the strain due to the change in relative pore volume. 

Having inserted Eq. (1.2) into thermodynamic inequality (i. I) and assuming that the 
change in density is small, we have 

S : ef~ + 3p'~N ~ O, p" = p - -  p~; ( 1 . 4 )  

. . . .  9 0 ~ O ( l n 0 - - 1  ). (1.5) 
2 \ o V  N K "  + "~ G" P . ~ OV N ~ - -  OV N 

We t a k e  t h e  f o l l o w i n g  [15] f o r  t h e  form o f  t h e  e v o l u t i o n a r y  e q u a t i o n  f o r  t h e  v i s c o p l a s t i c  
strain 

\% /% 

where ~( . . .  ) == (I)((...) > O) (0((...) ~.~ 0)); cr~ = a~(6 ) ,  et/~, V N )  are the equilibrium yield point (depen- 
dent on temperature), the intensity of the plastic strains e p, and porosity; o u is the inten- 
sity of the stresses. The evolutionary equation for the change in volumetric strain due to 
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porosity is formulated in a form similar to (1.6): i N = ~<p'/p*--i> (p~ is a threshold param- 
eter dependent on V N and ~). 

To satisfy the thermodynamic inequality (1.4), it is necessary to satisfy the require- 
ments �9 <...>S:S/au+ 3p'~<...>~0. The inequality is satisfied by virtue of the definition of 
the function ~, as well as under the conditions 

[ ~ > 0 ,  i f  p ' > p ~ > O ,  

[ ~ < 0 ,  i f  p ' < p ~ < O ,  

<'"> = (o, pZ p, 

We obtain the equation for the change in temperature in an adiabatic approximation by 

means of (i.i) and (1.2): pce4 = r'p-- 30~p+ S :eP + (p' +OOp~/@O)~ N. Expressing p from Eq. 
(1.3) and differentiating over time, we find 

 =3Kd 

The last relation reflects the phenomenon of loss of stiffness by the porous material 
with progressive pore collapse [2]. The mechanism of such collapse consists of intensive 
flow into the pores spaces (developed microplastic flow) with small maerostrains of the ma- 
trix. Thus, with only a small change in pressure, the volumetric deformation of the porous 
material is substantial due to an intensive change in porosity. In experimental p ~ p curves, 
this phenomenon corresponds to a sharp reduction in the slope of the adiabatic curve, 

2. Descriptio n of the Experiment. Specimens were subjected to dynamic loading on a 
ballistic accelerator, The accelerator provided for plane collision of the surfaces of the 
striker and the target (Fig. i). A steel plate 2 that was 10-12 nun thick was thrown against 
a steel shield 1 that was 8 mm thick. The plate was mounted on an aluminum striker 3 that 
was accelerated in the accelerator. Two of three disks of porous iron (powders of grade 
PZh4 M3) were placed behind the shield, while pressure gauges 4 were placed between the disks 
to record the profile of the transmitted shock wave. The measurement procedures used were 
similar to those employed in [16] for nonporous specimens. The experimentsshowed that a 
shock wave in porous iron has a two-wave configuration, similar to the elastoplastic case. 

The low-amplitude wave propagates at a high velocity, which is evidently the result of 
the strength of the powder particles [17]. The pressure in the wave depends on the colli- 
sion velocity. The first wave is followed by a second wave in which plastic flow of material 
into the pores occurs at a high rate. The pressure in the second wave rapidly decays With 
distance, so that the gauge records only the first wave when the collision velocity is low. 
Synchronous recording of pressure by two gauges at different points made it possible to mea- 
sure the mean velocities of the first and the second waves through the thickness of the disks 
and the attenuation of the second wave during propagation. 

Table 1 shows some of the results of measurement of the parameters of the shock waves 
in porous iron. 

3. Results. Numerical calculations performed with allowance for temperature showed 
that the heating of the material with a low-intensity loading pulse is localized near the 
loading surface and has almost no effect on the decay of the compression wave. Thus, in the 
collision of a steel striker with a plate of porous iron (initial porosity 20%) at a velocity 
of 200 m/sec, the surface layer of the target is heated 40~ At a collision velocity of 
500 m/sec, it is heated 130~ Thus, we will henceforth use the simplest variant of the 
model, not allowing for the heating of the material during shock compression. The numerical 
experiment corresponded to the conditions of the test: a steel striker-plate was collected 
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TABLE i 

@ 

G) 

q-.I 
O 

r o 
> 

�9 ,4  r 

�9 ,4 w 

145 
239 
644 
163 
642 
635 
486 

o~ 
Amplitude of 
pulse, GPa 

Difference 
betwee 
theoretical 
and exneri- 
mental-data, 
% 

"~ Igauge 2 i i2 ~:~o gl auge gauge ~gauge 

Velocity of 
waves, k m/sac 

firstJ second 
,wave wave 

Difference 
between 
theoretical 
and experimen- 
tal data, 
% 

first second 
wave wave 

0,t 
0,1 
0,1 
0,2 
0,2 
0,3 
0,4 

1,50 0,625 * 
2,50 0,625 * 
9,05 6,7 
1,1 0,37 * 
7,5 1,9 
5,6 1,65 
3,25 0,8 

10 
5 
0 
1,6 
2,7 
3,7 
9,4 

3,2 
3,2 

t3,9 
t0,2 
t3,t 
1t .8 
215 

5,08 
5,08 
5.08 

3.95 
219 

2,69 

t.55 
1127 
0,85 

2,4 
6,6 
3,1 
3,2 
3,0 
4,4 

i4,4 

3,2 

2,7 
1,5 
4,3 

*Only the first wave was recorded. 

with a laminated target plate consisting of a thin surface layer and porous iron. 

The function ~, determining the kinetics of pore collapse, was assigned in the form 
�9 N V N ! P'  ~ n  
e =~_=_-~-~--I) (T and n are parameters of the model). The dependence of the barrier 

pressure p* on the running porosity V N was taken in its form in [9], satisfactorily describ- 
ing the static test data: p* = a~ InVN/3. The effect of the level of porosity V N on the 
moduli K and G was approximated by the relations K = K0(l - vN) k, G = G0(1 - vN) m. 

The function r in the evolutionary equation for the viscoplastic strain of the matrix 
(1.5) was chosen on the basis of well-known data on the viscosity of metals at high strain 
rates, in combination with the method used in [14]. Thus, in the given formulation of the 
model, allowing for porosity and the kinetics of its change leads to the appearance of four 
additional constants: ~, n, k, m. The model parameters �9 and n are chosen upon comparison of 
calculations and experiments according to the attenuation of the wave amplitude, the residual 
porosity of the tested specimens, and the time dependence of the pressure or masss speed on 
the various distances from the loading surface. The model parameters k and m are chosen on 
condition of agrement of the theoretical and experimental velocities of the body and shear 
waves in the porous material. 

Calculations performed with different parameters �9 and n showed that the model qualita- 
tively describes the behavior of different porous media. Figure 2 shows how the parameter n 
affects the theoretical compression curve of the porous material (V~ = 0.3). Curves 1-4 cor- 
respond to n = 0.5, I, 2, and 3. At n <-~1, the theoretical p ~ V curves are similar to the 
analogous empirical relations for soils and bulk materials, while at n > i they correspond to 
plastic flow into pores in porous materials. 

Figures 3 and 4 illustrate the experimental (dashed lines) and theoretical (solid lines) 
stress profiles corresponding to gauges 1 and 2 (see Fig. i) for test 5 (see Table i). The 
model parameters n = 2, �9 = 4 ~sec, k = 2, and m = 4 were obtained from the best agreement 
between the theoretical and experimental curves. All of the remaining experiments were set 
up with unchanged model parameters and resulted in satisfactory agreement (Fig. 4 for test 
2). 

The experiment shows that the amplitude of the compression waves decays rapidly during 
propagation in the porous iron. Even with relatively low amplitudes, the plastic wave has a 
shock front. This is attributable to the characteristic form of the theoretical curves of 
shock compression p ~ p~(l -V N) shown in Fig. 5 (curves i-4 correspond to V~ = 0.4, 0.3, 
0.2, 0.i). The nonequilibrium nature of the process is manifest here in the absence of a 
single p ~ p curve. The density of the material being compressed depends on factors other 
than just pressure: the mechanism of decay of the pulse is controlled to a considerable ex- 
tent by the ratio of the velocities of the loading and unloading waves, which are determined 
by the running value of porosity and the kinetics of its change. We should also point out 
the appreciably nonlinear dependence of the velocity of the plastic wave on the amplitude of 
the compression pulse. With a reduction in the amplitude of the plastic wave to the elastic 
value, its velocity decreases to almost zero. 

Figure 6 shows the decay of the amplitude of the shock waves (solid lines) and the dis- 
tribution of residual porosity (dashed lines) through the thickness of a specimen of porous 
iron (V~ = 0.2) at collision velocities of 200, 400, and 600 m/sac (curves i-3). Most of 
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the energy is expended on compaction of the front part of the plate. Only elastic waves or 
waves of low amplitude reach the rear region, and these waves do not lead to a significant 
reduction in porosity. In other words, a porous specimen is loaded considerably more non- 
uniformly by a shock wave than is a solid specimen. 

Table 1 shows the difference between the experimental and theoretical amplitudes and 
velocities of the waves. We should point out the satisfactory agreement of the wave ampli- 
tudes obtained theoretically and experimentally from gauges i and 2. The differences in the 
velocity and form of the elastic precursor are evidently connected with the fact that we did 
not allow for the elastic change in porosity. 
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